Kubernetes基础入门
Kubernetes 简介
Kubernetes 是谷歌开源的容器集群管理系统,是 Google 多年大规模容器管理技术 Borg 的开源版本,主要功能包括:
-
基于容器的应用部署、维护和滚动升级
-
负载均衡和服务发现
-
跨机器和跨地区的集群调度
-
自动伸缩
-
无状态服务和有状态服务
-
广泛的 Volume 支持
-
插件机制保证扩展性
Kubernetes 发展非常迅速,已经成为容器编排领域的领导者。
Kubernetes 是一个平台
Kubernetes 提供了很多的功能,它可以简化应用程序的工作流,加快开发速度。通常,一个成功的应用编排系统需要有较强的自动化能力,这也是为什么 Kubernetes 被设计作为构建组件和工具的生态系统平台,以便更轻松地部署、扩展和管理应用程序。
用户可以使用 Label 以自己的方式组织管理资源,还可以使用 Annotation 来自定义资源的描述信息,比如为管理工具提供状态检查等。
此外,Kubernetes 控制器也是构建在跟开发人员和用户使用的相同的 API 之上。用户还可以编写自己的控制器和调度器,也可以通过各种插件机制扩展系统的功能。
这种设计使得可以方便地在 Kubernetes 之上构建各种应用系统。
Kubernetes 不是什么
Kubernetes 不是一个传统意义上,包罗万象的 PaaS (平台即服务) 系统。它给用户预留了选择的自由。
-
不限制支持的应用程序类型,它不插手应用程序框架, 也不限制支持的语言 (如 Java, Python, Ruby 等),只要应用符合 12 因素 即可。Kubernetes 旨在支持极其多样化的工作负载,包括无状态、有状态和数据处理工作负载。只要应用可以在容器中运行,那么它就可以很好的在 Kubernetes 上运行。
-
不提供内置的中间件 (如消息中间件)、数据处理框架 (如 Spark)、数据库 (如 mysql) 或集群存储系统 (如 Ceph) 等。这些应用直接运行在 Kubernetes 之上。
-
不提供点击即部署的服务市场。
-
不直接部署代码,也不会构建您的应用程序,但您可以在 Kubernetes 之上构建需要的持续集成 (CI) 工作流。
-
允许用户选择自己的日志、监控和告警系统。
-
不提供应用程序配置语言或系统 (如 jsonnet)。
-
不提供机器配置、维护、管理或自愈系统。
另外,已经有很多 PaaS 系统运行在 Kubernetes 之上,如 Openshift, Deis 和 Eldarion 等。 您也可以构建自己的 PaaS 系统,或者只使用 Kubernetes 管理您的容器应用。
当然了,Kubernetes 不仅仅是一个 “编排系统”,它消除了编排的需要。Kubernetes 通过声明式的 API 和一系列独立、可组合的控制器保证了应用总是在期望的状态,而用户并不需要关心中间状态是如何转换的。这使得整个系统更容易使用,而且更强大、更可靠、更具弹性和可扩展性。
核心组件
Kubernetes 主要由以下几个核心组件组成:
-
etcd 保存了整个集群的状态;
-
apiserver 提供了资源操作的唯一入口,并提供认证、授权、访问控制、API 注册和发现等机制;
-
controller manager 负责维护集群的状态,比如故障检测、自动扩展、滚动更新等;
-
scheduler 负责资源的调度,按照预定的调度策略将 Pod 调度到相应的机器上;
-
kubelet 负责维护容器的生命周期,同时也负责 Volume(CVI)和网络(CNI)的管理;
-
Container runtime 负责镜像管理以及 Pod 和容器的真正运行(CRI);
-
kube-proxy 负责为 Service 提供 cluster 内部的服务发现和负载均衡

Kubernetes 版本
Kubernetes 的稳定版本在发布后会继续支持 9 个月。每个版本的支持周期为:
| Kubernetes version | Release month | End-of-life-month |
|---|---|---|
| v1.6.x | March 2017 | December 2017 |
| v1.7.x | June 2017 | March 2018 |
| v1.8.x | September 2017 | June 2018 |
| v1.9.x | December 2017 | September 2018 |
| v1.10.x | March 2018 | December 2018 |
| v1.11.x | June 2018 | March 2019 |
Kubernetes 基本概念
Container
Container(容器)是一种便携式、轻量级的操作系统级虚拟化技术。它使用 namespace 隔离不同的软件运行环境,并通过镜像自包含软件的运行环境,从而使得容器可以很方便的在任何地方运行。
由于容器体积小且启动快,因此可以在每个容器镜像中打包一个应用程序。这种一对一的应用镜像关系拥有很多好处。使用容器,不需要与外部的基础架构环境绑定, 因为每一个应用程序都不需要外部依赖,更不需要与外部的基础架构环境依赖。完美解决了从开发到生产环境的一致性问题。
容器同样比虚拟机更加透明,这有助于监测和管理。尤其是容器进程的生命周期由基础设施管理,而不是被进程管理器隐藏在容器内部。最后,每个应用程序用容器封装,管理容器部署就等同于管理应用程序部署。
其他容器的优点还包括
- 敏捷的应用程序创建和部署: 与虚拟机镜像相比,容器镜像更易用、更高效。
- 持续开发、集成和部署: 提供可靠与频繁的容器镜像构建、部署和快速简便的回滚(镜像是不可变的)。
- 开发与运维的关注分离: 在构建/发布时即创建容器镜像,从而将应用与基础架构分离。
- 开发、测试与生产环境的一致性: 在笔记本电脑上运行和云中一样。
- 可观测:不仅显示操作系统的信息和度量,还显示应用自身的信息和度量。
- 云和操作系统的分发可移植性: 可运行在 Ubuntu, RHEL, CoreOS, 物理机, GKE 以及其他任何地方。
- 以应用为中心的管理: 从传统的硬件上部署操作系统提升到操作系统中部署应用程序。
- 松耦合、分布式、弹性伸缩、微服务: 应用程序被分成更小,更独立的模块,并可以动态管理和部署 – 而不是运行在专用设备上的大型单体程序。
- 资源隔离:可预测的应用程序性能。
- 资源利用:高效率和高密度。
Pod
Kubernetes 使用 Pod 来管理容器,每个 Pod 可以包含一个或多个紧密关联的容器。
Pod 是一组紧密关联的容器集合,它们共享 IPC 和 Network namespace,是 Kubernetes 调度的基本单位。Pod 内的多个容器共享网络和文件系统,可以通过进程间通信和文件共享这种简单高效的方式组合完成服务。

在 Kubernetes 中,所有对象都使用 manifest(yaml 或 json)来定义,比如一个简单的 nginx 服务可以定义为 nginx.yaml,它包含一个镜像为 nginx 的容器:
apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
Node
Node 是 Pod 真正运行的主机,可以是物理机,也可以是虚拟机。为了管理 Pod,每个 Node 节点上至少要运行 container runtime(比如 docker 或者 rkt)、kubelet 和 kube-proxy 服务。

Namespace
Namespace 是对一组资源和对象的抽象集合,比如可以用来将系统内部的对象划分为不同的项目组或用户组。常见的 pods, services, replication controllers 和 deployments 等都是属于某一个 namespace 的(默认是 default),而 node, persistentVolumes 等则不属于任何 namespace。
Service
Service 是应用服务的抽象,通过 labels 为应用提供负载均衡和服务发现。匹配 labels 的 Pod IP 和端口列表组成 endpoints,由 kube-proxy 负责将服务 IP 负载均衡到这些 endpoints 上。
每个 Service 都会自动分配一个 cluster IP(仅在集群内部可访问的虚拟地址)和 DNS 名,其他容器可以通过该地址或 DNS 来访问服务,而不需要了解后端容器的运行。

apiVersion: v1
kind: Service
metadata:
name: nginx
spec:
ports:
- port: 8078 # the port that this service should serve on
name: http
# the container on each pod to connect to, can be a name
# (e.g. 'www') or a number (e.g. 80)
targetPort: 80
protocol: TCP
selector:
app: nginx
Label
Label 是识别 Kubernetes 对象的标签,以 key/value 的方式附加到对象上(key 最长不能超过 63 字节,value 可以为空,也可以是不超过 253 字节的字符串)。
Label 不提供唯一性,并且实际上经常是很多对象(如 Pods)都使用相同的 label 来标志具体的应用。
Label 定义好后其他对象可以使用 Label Selector 来选择一组相同 label 的对象(比如 ReplicaSet 和 Service 用 label 来选择一组 Pod)。Label Selector 支持以下几种方式:
- 等式,如
app=nginx和env!=production - 集合,如
env in (production, qa) - 多个 label(它们之间是 AND 关系),如
app=nginx,env=test
Annotations
Annotations 是 key/value 形式附加于对象的注解。不同于 Labels 用于标志和选择对象,Annotations 则是用来记录一些附加信息,用来辅助应用部署、安全策略以及调度策略等。比如 deployment 使用 annotations 来记录 rolling update 的状态。
Kubernetes 101
体验 Kubernetes 最简单的方法是跑一个 nginx 容器,然后使用 kubectl 操作该容器。Kubernetes 提供了一个类似于 docker run 的命令 kubectl run,可以方便的创建一个容器(实际上创建的是一个由 deployment 来管理的 Pod):
$ kubectl run --image=nginx:alpine nginx-app --port=80
deployment "nginx-app" created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-app-4028413181-cnt1i 1/1 Running 0 52s
等到容器变成 Running 后,就可以用 kubectl 命令来操作它了,比如
kubectl get– 类似于docker ps,查询资源列表kubectl describe– 类似于docker inspect,获取资源的详细信息kubectl logs– 类似于docker logs,获取容器的日志kubectl exec– 类似于docker exec,在容器内执行一个命令
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-app-4028413181-cnt1i 1/1 Running 0 6m
$ kubectl exec nginx-app-4028413181-cnt1i -- ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.5 31736 5108 ? Ss 00:19 0:00 nginx: master process nginx -g daemon off;
nginx 5 0.0 0.2 32124 2844 ? S 00:19 0:00 nginx: worker process
root 18 0.0 0.2 17500 2112 ? Rs 00:25 0:00 ps aux
$ kubectl describe pod nginx-app-4028413181-cnt1i
Name: nginx-app-4028413181-cnt1i
Namespace: default
Node: boot2docker/192.168.64.12
Start Time: Tue, 06 Sep 2016 08:18:41 +0800
Labels: pod-template-hash=4028413181
run=nginx-app
Status: Running
IP: 172.17.0.3
Controllers: ReplicaSet/nginx-app-4028413181
Containers:
nginx-app:
Container ID: docker://4ef989b57d0a7638ad9c5bbc22e16d5ea5b459281c77074fc982eba50973107f
Image: nginx
Image ID: docker://sha256:4efb2fcdb1ab05fb03c9435234343c1cc65289eeb016be86193e88d3a5d84f6b
Port: 80/TCP
State: Running
Started: Tue, 06 Sep 2016 08:19:30 +0800
Ready: True
Restart Count: 0
Environment Variables: <none>
Conditions:
Type Status
Initialized True
Ready True
PodScheduled True
Volumes:
default-token-9o8ks:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-9o8ks
QoS Tier: BestEffort
Events:
FirstSeen LastSeen Count From SubobjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
8m 8m 1 {default-scheduler} Normal Scheduled Successfully assigned nginx-app-4028413181-cnt1i to boot2docker
8m 8m 1 {kubelet boot2docker} spec.containers{nginx-app} Normal Pulling pulling image "nginx"
7m 7m 1 {kubelet boot2docker} spec.containers{nginx-app} Normal Pulled Successfully pulled image "nginx"
7m 7m 1 {kubelet boot2docker} spec.containers{nginx-app} Normal Created Created container with docker id 4ef989b57d0a
7m 7m 1 {kubelet boot2docker} spec.containers{nginx-app} Normal Started Started container with docker id 4ef989b57d0a
$ curl http://172.17.0.3
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
$ kubectl logs nginx-app-4028413181-cnt1i
127.0.0.1 - - [06/Sep/2016:00:27:13 +0000] "GET / HTTP/1.0" 200 612 "-" "-" "-"
使用 yaml 定义 Pod
上面是通过 kubectl run 来启动了第一个 Pod,但是 kubectl run 并不支持所有的功能。在 Kubernetes 中,更经常使用 yaml 文件来定义资源,并通过 kubectl create -f file.yaml 来创建资源。比如,一个简单的 nginx Pod 可以定义为:
apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
前面提到,kubectl run 并不是直接创建一个 Pod,而是先创建一个 Deployment 资源(replicas=1),再由与 Deployment 关联的 ReplicaSet 来自动创建 Pod,这等价于这样一个配置:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
run: nginx-app
name: nginx-app
namespace: default
spec:
replicas: 1
selector:
matchLabels:
run: nginx-app
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
labels:
run: nginx-app
spec:
containers:
- image: nginx
name: nginx-app
ports:
- containerPort: 80
protocol: TCP
dnsPolicy: ClusterFirst
restartPolicy: Always
使用 Volume
Pod 的生命周期通常比较短,只要出现了异常,就会创建一个新的 Pod 来代替它。那容器产生的数据呢?容器内的数据会随着 Pod 消亡而自动消失。Volume 就是为了持久化容器数据而生,比如可以为 redis 容器指定一个 hostPath 来存储 redis 数据:
apiVersion: v1
kind: Pod
metadata:
name: redis
spec:
containers:
- name: redis
image: redis
volumeMounts:
- name: redis-persistent-storage
mountPath: /data/redis
volumes:
- name: redis-persistent-storage
hostPath:
path: /data/
Kubernetes volume 支持非常多的插件,可以根据实际需要来选择:
- emptyDir
- hostPath
- gcePersistentDisk
- awsElasticBlockStore
- nfs
- iscsi
- flocker
- glusterfs
- rbd
- cephfs
- gitRepo
- secret
- persistentVolumeClaim
- downwardAPI
- azureFileVolume
- vsphereVolume
使用 Service
前面虽然创建了 Pod,但是在 kubernetes 中,Pod 的 IP 地址会随着 Pod 的重启而变化,并不建议直接拿 Pod 的 IP 来交互。那如何来访问这些 Pod 提供的服务呢?使用 Service。Service 为一组 Pod(通过 labels 来选择)提供一个统一的入口,并为它们提供负载均衡和自动服务发现。比如,可以为前面的 nginx-app 创建一个 service:
$ kubectl expose deployment nginx-app --port=80 --target-port=80 --type=NodePort
service "nginx-app" exposed
$ kubectl describe service nginx-app
Name: nginx-app
Namespace: default
Labels: run=nginx-app
Selector: run=nginx-app
Type: ClusterIP
IP: 10.0.0.66
Port: <unset> 80/TCP
NodePort: <unset> 30772/TCP
Endpoints: 172.17.0.3:80
Session Affinity: None
No events.
这样,在 cluster 内部就可以通过 http://10.0.0.66 和 http://node-ip:30772 来访问 nginx-app。而在 cluster 外面,则只能通过 http://node-ip:30772 来访问。
Kubernetes 201
扩展应用
通过修改 Deployment 中副本的数量(replicas),可以动态扩展或收缩应用:

这些自动扩展的容器会自动加入到 service 中,而收缩回收的容器也会自动从 service 中删除。
$ kubectl scale --replicas=3 deployment/nginx-app
$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-app 3 3 3 3 10m
滚动升级
滚动升级(Rolling Update)通过逐个容器替代升级的方式来实现无中断的服务升级:
kubectl rolling-update frontend-v1 frontend-v2 --image=image:v2




在滚动升级的过程中,如果发现了失败或者配置错误,还可以随时回滚:
kubectl rolling-update frontend-v1 frontend-v2 --rollback
需要注意的是,kubectl rolling-update 只针对 ReplicationController。对于更新策略是 RollingUpdate 的 Deployment(Deployment 可以在 spec 中设置更新策略为 RollingUpdate,默认就是 RollingUpdate),更新应用后会自动滚动升级:
spec:
replicas: 3
selector:
matchLabels:
run: nginx-app
strategy:
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
type: RollingUpdate
而更新应用的话,就可以直接用 kubectl set 命令:
kubectl set image deployment/nginx-app nginx-app=nginx:1.9.1
滚动升级的过程可以用 rollout 命令查看:
$ kubectl rollout status deployment/nginx-app
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
Waiting for rollout to finish: 2 of 3 updated replicas are available...
Waiting for rollout to finish: 2 of 3 updated replicas are available...
Waiting for rollout to finish: 2 of 3 updated replicas are available...
Waiting for rollout to finish: 2 of 3 updated replicas are available...
Waiting for rollout to finish: 2 of 3 updated replicas are available...
deployment "nginx-app" successfully rolled out
Deployment 也支持回滚:
$ kubectl rollout history deployment/nginx-app
deployments "nginx-app"
REVISION CHANGE-CAUSE
1 <none>
2 <none>
$ kubectl rollout undo deployment/nginx-app
deployment "nginx-app" rolled back
资源限制
Kubernetes 通过 cgroups 提供容器资源管理的功能,可以限制每个容器的 CPU 和内存使用,比如对于刚才创建的 deployment,可以通过下面的命令限制 nginx 容器最多只用 50% 的 CPU 和 128MB 的内存:
$ kubectl set resources deployment nginx-app -c=nginx --limits=cpu=500m,memory=128Mi
deployment "nginx" resource requirements updated
这等同于在每个 Pod 中设置 resources limits:
apiVersion: v1
kind: Pod
metadata:
labels:
app: nginx
name: nginx
spec:
containers:
- image: nginx
name: nginx
resources:
limits:
cpu: "500m"
memory: "128Mi"
健康检查
Kubernetes 作为一个面向应用的集群管理工具,需要确保容器在部署后确实处在正常的运行状态。Kubernetes 提供了两种探针(Probe,支持 exec、tcpSocket 和 http 方式)来探测容器的状态:
- LivenessProbe:探测应用是否处于健康状态,如果不健康则删除并重新创建容器
- ReadinessProbe:探测应用是否启动完成并且处于正常服务状态,如果不正常则不会接收来自 Kubernetes Service 的流量
对于已经部署的 deployment,可以通过 kubectl edit deployment/nginx-app 来更新 manifest,增加健康检查部分:
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
labels:
app: nginx
name: nginx-default
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- image: nginx
imagePullPolicy: Always
name: http
resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
resources:
limits:
cpu: "500m"
memory: "128Mi"
livenessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 15
timeoutSeconds: 1
readinessProbe:
httpGet:
path: /
port: 80
initialDelaySeconds: 5
timeoutSeconds: 1
Kubernetes 集群

一个 Kubernetes 集群由分布式存储 etcd、控制节点 controller 以及服务节点 Node 组成。
- 控制节点主要负责整个集群的管理,比如容器的调度、维护资源的状态、自动扩展以及滚动更新等
- 服务节点是真正运行容器的主机,负责管理镜像和容器以及 cluster 内的服务发现和负载均衡
- etcd 集群保存了整个集群的状态
详细的介绍请参考 Kubernetes 架构。
集群联邦
集群联邦(Federation)用于跨可用区的 Kubernetes 集群,需要配合云服务商(如 GCE、AWS)一起实现。

详细的介绍请参考 Federation。
创建 Kubernetes 集群
可以参考 Kubernetes 部署指南 来部署一套 Kubernetes 集群。而对于初学者或者简单验证测试的用户,则可以使用以下几种更简单的方法。
minikube
创建 Kubernetes cluster(单机版)最简单的方法是 minikube:
$ minikube start
Starting local Kubernetes cluster...
Kubectl is now configured to use the cluster.
$ kubectl cluster-info
Kubernetes master is running at https://192.168.64.12:8443
kubernetes-dashboard is running at https://192.168.64.12:8443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
play-with-k8s
Play with Kubernetes 提供了一个免费的 Kubernetes 体验环境,直接访问 < http://play-with-k8s.com > 就可以使用 kubeadm 来创建 Kubernetes 集群。注意,每次创建的集群最长可以使用 4 小时。
Play with Kubernetes 有个非常方便的功能:自动在页面上显示所有 NodePort 类型服务的端口,点击该端口即可访问对应的服务。
详细使用方法可以参考 Play-With-Kubernetes。






暂无评论内容